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1. Introduction 

Nonlinear hyperelasticity addresses the thermodynamically reversible response of 
solids subjected to large deformation; classes of crystalline materials of present 
interest include metals, ceramics, minerals, and energetic materials. Accurate, 
efficient, stable, and thermodynamically consistent models for nonlinear 
anisotropic elasticity are required for proper mesoscale modeling of crystalline 
solids subjected to impact or ballistic loading. At a material element with 
reference coordinates X and spatial coordinates x, the deformation gradient F and 
volume ratio J are 

0( ) , ( ) ; ( ) detiJ K i J iJ i JF X x X u X J V V= ∂ ∂ = ∂ ∂ = + ∂ ∂ = =F X x X X Fδ , (1) 

where u is the particle displacement vector. For an elastic-plastic material, where 
“plastic” refers to any thermodynamically irreversible mechanism such as 
dislocation glide, deformation twinning, fracture, or pore collapse, the total 
deformation gradient is typically split into a product of a thermoelastic term 
(superscript E) and a plastic term (superscript P):1   

 , ; det detE P E P E P E P
iJ iK KJF F F J J J= = = =F F F F F . (2) 

Usual Lagrangian formulations of nonlinear elasticity for crystals1,2 incorporate 
the elastic Green material strain tensor 

 T1 1
2 2( ), ( )E E E E

IJ kI kJ IJE F F δ= − = −E F F 1 . (3) 

Also considered herein are theories incorporating the elastic Eulerian material 
strain tensor 

 1 T 1 11 1
2 2( ), ( )E E E E

IJ IJ Ik JkD F Fδ− − − −= − = −D F F1 , (4) 

and the elastic material logarithmic strain tensor 

 T T1 1
2 2ln ln( ), ln( )E E E E E

IJ IJe= = =e U F F F F . (5) 

Elastic constant tensors of all orders have the same symmetries, though 
magnitudes of higher-order constants differ among the 3 representations. At fixed 
entropy, assuming a stress-free reference configuration, and written explicitly 
with elastic constants up to fourth order, internal energy functions per unit 
reference volume are expressed as the Taylor polynomials 

 1 1 1
2! 3! 4!( )U E E E E E E E E E= + + +E αβ α β αβγ α β γ αβγδ α β γ δC C C , (6) 
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 1 1 1
2! 3! 4!

ˆ ˆˆ ( )U D D D D D D D D D= + + +D αβ α β αβγ α β γ αβγδ α β γ δC C C , (7) 

 1 1 1
2! 3! 4!( )U e e e e e e e e e= + + +e

 
αβ α β αβγ α β γ αβγδ α β γ δC C C . (8) 

Greek indices denote Voigt notation. Consistent relationships among second- 
(equal), third-, and higher-order elastic constants have been derived elsewhere,3–6 
allowing values for Lagrangian constants entering Eq. 6 to be converted to those 
in Eqs. 7 and 8 without further experiments. Axial components of strain tensors 
are compared for spherical and uniaxial deformations in Fig. 1. The magnitude of 
the axial component of D increases much more rapidly than that of E under 
compression, with e demonstrating trends intermediate to the other strains. 
Internal energy, stress/pressure, and stiffness of strong solids all tend to increase 
rapidly with compression.7 Therefore, Eulerian and logarithmic theories would be 
expected to converge faster, with fewer higher-order elastic constants needed, 
than Lagrangian theory. 

 
Fig. 1   Lagrangian (E11), logarithmic (e11), and Eulerian (D11) strains under spherical and 
uniaxial deformation 

Benefits of Eulerian strain tensors for isotropic materials were predicted8 and 
demonstrated for cubic crystals under hydrostatic stress.9 Thermal effects were 
considered in Davies10 for cubic crystals, and a theory for noncubic crystals was 
initiated in Weaver.11 A complete D-based continuum thermoelastic theory for 
large deformation of crystals of arbitrary symmetry was developed in Clayton.3 
Analytical solutions for homogeneous deformations of ideal cubic crystals were 
studied over a prescribed range of elastic coefficients; stress states and intrinsic 
stability measures were compared. For realistic coefficients, Eulerian theory 
predicted more realistic and stable behavior than Lagrangian theory under large 
compression and shear. Analytical solutions for shock compression of anisotropic 
single crystals were derived for internal energy functions quartic in Lagrangian or 
Eulerian strain and linear in entropy; results were analyzed for nonmetals quartz, 
sapphire, and diamond in Clayton3 and metals aluminum, copper, and magnesium 
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in Clayton.4 A complete e-based continuum thermoelastic theory was analogously 
developed in Clayton5 and applied to study the shock response of the same 3 
nonmetals. The theory was extended to describe elastic-plastic response using the 
decomposition of Eq. 2, and solutions for plastic shocks (involving slip, twinning, 
or shear fractures) following an elastic precursor in rate independent solids were 
derived.5 Logarithmic theory delivered superior accuracy to Lagrangian and 
Eulerian theories for modeling shocks in sapphire (X- and Z-cut), quartz (Z-cut), 
and diamond (X-cut).5 Logarithmic theory incorporating third-order elastic 
constants was also applied to analytically model the elastic-inelastic response of 
polycrystalline titanium diboride ceramic,12 including double yield and effects of 
static lateral prestress. Eulerian theory was recently used to numerically model the 
viscoplastic response of aluminum single crystals and textured polycrystals in 
wave propagation simulated using the finite difference method,13 wherein 
Lagrangian theory was found insufficient for modeling strong/overdriven elastic-
plastic shocks.  

2. Approach  

New application of logarithmic strain-based theory (e-based theory) to shock 
compression of metals is presented here. Predictions are thermoelastic and strictly 
applicable only for very small volumes, such as in atomic simulations14 or in the 
immediate vicinity of pinned defect cores,15 wherein plastic deformation does not 
occur. Solutions to the planar thermoelastic shock problem in anisotropic crystals 
were derived fully for Lagrangian and Eulerian theory in Clayton3 and for 
logarithmic theory in Clayton.5 The procedure involves simultaneous solution of 
Rankine-Hugoniot equations for compatibility and conservation of momentum 
and energy, along with consideration of internal energy functions (Eqs. 6, 7, or 8) 
extended to include entropy (Grunëisen tensors). Axial shock stress P (positive in 
compression) is  

2 3 31 1
11 111 11112 6[ O( )] (Lagrangian)P J U E J E E E E= − ∂ ∂ = − + + +C C C , (9) 

3 3 2 3 31 1
11 111 11112 6

ˆ ˆˆ [ O( )] (Eulerian)P J U D J D D D D− −= − ∂ ∂ = − + + +C C C , (10) 

1 1 2 3 31 1
11 111 11112 6[ O( )] (Logarithmic)P J U e J e e e e− −= − ∂ ∂ = − + + +

 
C C C , (11) 

where entropic contributions are of order 3 in scalar strain measures for uniaxial 
strain: 

 1/ 2 1/ 2(1 2 ) (1 2 ) exp( )J E D e−= + = − = . (12) 
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In laboratory-scale specimens, yielding would commence in pure ductile metals at 
small compressions at which effects of higher-order constants and differences 
among Eqs. 9–11 would be negligible. However, nonlinear elastic effects on 
deviatoric stress may be important at larger compressions after yielding, 
particularly for lower symmetry materials with restricted slip planes/directions,4 
and the nonlinearity in pressure-volume response is important regardless of shear 
strength. When strength is low and can safely be omitted, the response of metals 
to moderate shocks can often be adequately approximated (p ≈ P) by an adiabatic 
pressure-volume (p-J) equation of state (EOS) for spherical compression. The 
EOS corresponding to each of Eqs. 6–8 truncated at order 3 in strain is3–5 

 1/ 3 1/ 3 2 / 33 3
0 02 4( )[1 ( 1)] (Lagrangian)p U J J J J− ′= −∂ ∂ = − − −B B ,(13) 

 7 / 3 5 / 3 2 / 33 3
0 02 4

ˆ ( )[1 4)( 1)] (Eulerian)p U J J J J− − −′= −∂ ∂ = − + − −B (B , (14) 

 1
0 02[(ln ) / ][1 ( 2) ln ] (Logarithmic)p U J J J J′= −∂ ∂ = − − −


B B , (15) 

where 0B  is the isentropic bulk modulus and 0′B  is its pressure derivative in the 
reference state.  

3. Results 

Properties for aluminum (Al), copper (Cu), and magnesium (Mg) are reported in 
Table 1.4 Predictions for shock stress versus volume ratio are made using the 
analytical solutions of Eqs. 9–11, considering only pure mode directions (strictly 
longitudinal response). Shock stress P normalized by second-order isentropic 
elastic constant C11 is shown in Fig. 2a for Al, Fig. 2b for Cu, Fig. 2c for Mg 
[a-axis] and Fig. 2d for Mg [c-axis]. Higher-order elastic constants are converted 
from measured/predicted Lagrangian constants using formulae derived or 
presented in Clayton3–5 and Perrin and Delannoy-Coutris.6 Elastic constants of up 
to order 4 are considered in results labeled “4th order”. Results labeled “3rd 
order” and “2nd order” are obtained, respectively, by setting fourth-order and 
both third- and fourth-order elastic constants to zero. Results in Fig. 2 compare 
logarithmic and Eulerian theories; plots comparing Lagrangian and Eulerian 
theories can be found in Clayton.4 All longitudinal higher-order elastic constants 
(i.e., all third- and fourth-order constants) are smaller in magnitude for Eulerian 
and logarithmic theory than Lagrangian theory for these metals (Table 1). Stress 
predictions of second- and third-order models are usually closer to those of 
fourth-order theory for Eulerian and logarithmic theory than Lagrangian theory. 
Tables 2 and 3 list relative error (%) of second- and third-order predictions 
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relative to fourth-order predictions, computed as 2× (second- or third-order result 
− fourth-order result)/(second- or third-order result + fourth-order result). For 
each crystal type, such errors are almost always smaller in magnitude for Eulerian 
theory (Eul2, Eul3) and logarithmic theory (Log2, Log3) than for Lagrangian 
theory (Lag2, Lag3) at a given volume ratio and order of approximation. 
Together, these observations imply a faster converging series in Eqs. 7 or 8 than 
in Eq. 6, as the number of higher-order constants is increased and greater 
accuracy of Eulerian or logarithmic theory than Lagrangian when the same 
number of constants (i.e., the same order of Taylor polynomial) is used. Eulerian 
and logarithmic theories trend toward comparable accuracy with one theory or the 
other possibly more accurate for a given metal or order of approximation. For Al, 
as shown in Fig. 2a, the analytical solution incorporating fourth-order Eulerian 
theory best matches atomic predictions:14 at J = 0.923, error in fourth-order 
Eulerian theory versus atomic simulation is –1.4%, compared to –7.4% for fourth-
order Lagrangian theory and –2.2% for fourth-order logarithmic theory.  

Table 1   Single crystal and polycrystal properties4 (θ0 = 295 K; Cαβ in GPa; ρ0 in g/cm3) 

Property Al [100] Cu [100] Mg [a-axis] Mg [c-axis] 

11C  107 166 59.4 61.6 

111C  –1,080 –1,279 –664 –728 

111Ĉ  203 715 49 12 

111


C  –438 –283 –308 –358 

1111C  25,000 11,900 8,170 7,380 

1111Ĉ  10,500 2,000 1,220 893 

1111


C  15,036 1,200 1,865 369 

1Γ  2.17 1.97 1.52 1.52 

0B  76 137 35.4 35.4 

0′B  4.42 5.48 3.90 3.90 

0ρ  2.70 8.96 1.74 1.74 
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Fig. 2   Analytical anisotropic thermoelastic solutions for axial stress in (a) shocked Al single 
crystal compared with atomic simulation data,16 (b) shocked Cu single crystal, (c) shocked 
Mg single crystal along a-axis, and (d) shocked Mg single crystal along c-axis  

 

Table 2   Relative error (%) in shock stress P predicted by third-order (Lag3, Log3, Eul3) 
and second-order (Lag2, Log2, Eul2) theories: Al and Cu 

V/V0 
Aluminum [100] Copper [100] 

Lag3 Log3 Eul3 Lag2 Log2 Eul2 Lag3 Log3 Eul3 Lag2 Log2 Eul2 
0.96 –5.0 –3.8 –3.1 –23.1 –11.9 +1.1 –1.6 –0.2 –0.4 –15.8 –3.7 +9.3 
0.92 –15.7 –13.9 –14.1 –48.2 –29.8 –5.0 –5.4 –0.8 –2.1 –31.6 –7.8 +19.9 
0.88 –28.1 –28.2 –34.5 –71.2 –51.0 –19.8 –10.4 –1.8 –6.2 –46.5 –12.4 +31.5 

  

Table 3   Relative error (%) in shock stress P predicted by third-order (Lag3, Log3, Eul3) 
and second-order (Lag2, Log2, Eul2) theories: Mg 

V/V0 
Magnesium [a-axis] Magnesium [c-axis] 

Lag3 Log3 Eul3 Lag2 Log2 Eul2 Lag3 Log3 Eul3 Lag2 Log2 Eul2 
0.96 –2.9 –0.8 –0.6 –22.8 –10.9 1.2 –2.5 –0.2 –0.4 –23.4 –11.0 –0.0 
0.92 –9.2 –3.0 –2.9 –44.7 –22.7 1.0 –7.9 –0.6 –2.0 –45.1 –22.5 –1.2 
0.88 –16.8 –6.3 –7.6 –64.3 –35.0 –1.4 –14.5 –1.2 –5.2 –64.2 –33.0 –3.8 

  

 

(a) 
(b) 

(c) (d) 
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Predictions of each third-order EOS in Eqs. 13–15 are compared with shock 
compression data16 for Al in Fig. 3a, Cu in Fig. 3b, and Mg in Fig. 3c. 
Compressibility properties of Table 1 used in these predictions are obtained from 
ultrasonic experiments17 and are not fit to the shock data. In each case, Eulerian 
theory is most accurate, followed by logarithmic theory and then Lagrangian 
theory, the latter significantly too compliant. Because Eulerian theory appears 
superior for modeling spherical compression and at least equally valid as 
logarithmic theory for modeling uniaxial compression, Eulerian theory is 
preferred overall for representing the shock response of metals. Future work 
should consider incorporating Eulerian theory in finite element simulations of the 
high-rate response of metals, offering potential improvement over prior 
implementations involving Lagrangian theory.18–20 Eulerian EOS (Eq. 14) is 
equivalent to the Birch-Murnaghan EOS.9 However, recent work5 found that 
logarithmic theory, while more computationally cumbersome than Eulerian 
theory, more accurately captures the shock response of ceramic crystals sapphire 
(α-Al2O3), diamond (C), and quartz (α-SiO2). As shown in Table 4, these 
nonmetals have a large ratio of effective shear (G0) to bulk modulus compared to 
metals.  

 

Fig. 3   Analytical pressure solutions for polycrystalline (a) aluminum, (b) copper, and (c) 
magnesium in the hydrodynamic limit compared with experimental data16 

 

 

(a) (b) 

(c) 
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Table 4   Ratio of ambient Voigt shear modulus to bulk modulus 

Ratio Cu Al Mg α-Al2O3 C α-SiO2 

0 0G B  0.34 0.35 0.53 0.65 1.22 1.27 

4. Conclusions 

Table 5 summarizes loading conditions, materials, and model performance 
studied in the present work as well as in Clayton.3–5 Eulerian nonlinear theory 
developed in Clayton3,4 is recommended for modeling the response of ductile 
metals, while logarithmic theory developed in Clayton5 can be recommended for 
modeling ceramics and minerals with larger ratios of shear to bulk stiffness. 

Table 5   Summary of present and prior research results: finite strain model evaluations 

Loading Protocol Material Recommended 
Theory Remarks Ref. 

Hydrostatic 
compression 

Ideal cubic, 
B′0 = 4 

Eulerian More accurate p-V 
response 

3 

Uniaxial 
compression 

Ideal cubic, 
B′0 = 4 

Eulerian More accurate and stable 3 

Simple shear Ideal cubic, 
B′0 = 4 

Eulerian More accurate and stable 3 

Shock compression 

Sapphire 
Logarithmic 

More accurate overall 5 
Diamond More accurate overall 5 
α-Quartz More accurate for Z-cut 3, 5 
Aluminum 

Eulerian 
Best fit to atomic data 4a 

Copper Faster convergence 4a 
Magnesium Faster convergence 4a 

a Present work
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5. Transitions 

Results of the current work are of high interest to modeling communities within 
the Department of Defense, Department of Energy, and the Materials in Extreme 
Dynamic Environments Collaborative Research Alliance. Results have been 
transitioned via publications.3–5,12,13,15 A plan is underway to implement the model 
into multiscale simulations of armor and munitions at the US Army Research 
Laboratory. Specifically, developments from this Director's Research Initiative 
(DRI) project are expected to offer substantial improvements over prior analytical 
and computational studies of the finite strain response of metals,18–26 ceramics,27–

33 concrete and geologic materials,34,35 and energetic molecular crystals.36 The 
nonlinear elastic theory can be directly implemented into phase-field simulations 
of microstructure.37–41 New developments in studies of lattice defects in electronic 
materials42–44 and generic crystalline solids45–55 are also foreseen. Results of Year 
1 of this DRI project were reported in Clayton.56 
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